

Fish Screen Evaluations

Fish Screen Oversight Committee Workshop September 14, 2023

Steve Thomas, P.E. National Marine Fisheries Service steve.thomas@noaa.gov

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

- Ensure water is uniformly distributed over all effective screen area
- Adjust flow control baffles to achieve uniform distribution of flow through screens

The amount of deviation of a discrete measurement from the target value that is deemed acceptable is 10% of the target value, although that value may vary on a case-by-case basis.

Terms

- <u>Target Approach Velocity</u> is the theoretical average approach velocity for a scenario: the current diversion rate divided by total *effective screen area*.
- <u>Design Approach Velocity</u> (given) is used to determine the minimum amount of screen area required based on the diversion capacity. (A = Q_{max} / V_a)
- The actual approach velocity is what's happening right now. If all goes well, this is what we can measure.

Terms

Equipment

- 2D or 3D acoustic Doppler velocity (ADV) probe that measures velocity at a discrete location.
- Nortek & SonTek commonly used.

Images from SonTek, Inc.

Terms

Ļ

SonTek ADV with down-looking head

Side-looking head

NOAA FISHERIES

Ē

F

ADV Sled on Inclined Flat Plate Screen

Ļ

On Conical Screen

Ļ

Cylindrical

Nortek Vectrino probe

Self Adjusting ADV Jig

Positioning Probes

Adequate clearance needed.

Positioning Probes

Adequate clearance needed.

Louver Style Baffles

Ę

Data Collection

- Sampling volume 3" from screen face.
- 10 Hz
- 30 60 sec / location

Continuity Check

The calculated diversion rate should be nearly equal to the measured diversion rate.

Data Analysis

Ę

Use WinADV: A Windows-based viewing and post-processing utility for ADV files developed by Tony Wahl at USBR.

https://www.usbr.gov/tsc/techreferences/computer%20software/software/winadv/index.html

Diversion Rate for Testing

- Maximum diversion capacity?
- The most commonly occurring diversion rate?
- What's the worst case scenario?
- Must be able to maintain conditions throughout the testing period.
 - Where to put the water?
 - Tidal considerations
 - Time constraints

Data Presentation

Approach Velocity (fps), Example

ΝΟΔΔ FISHERIES

Ę

Data Presentation

Ę

Questions

Page 31 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service